
CS 230 – Deep Learning

Winter 2019

Training a neural network

Color shift

- Image without

any modification

- Flipped with respect
to an axis for which
the meaning of the
image is preserved

Noise addition

- Rotation with
a slight angle

- Simulates incorrect
horizon calibration

Information loss

- Random focus
on one part of
the image

- Several random
crops can be
done in a row

Contrast change

Data processing

r Data augmentation – Deep learning models usually need a lot of data to be properly trained.
It is often useful to get more data from the existing ones using data augmentation techniques.
The main ones are summed up in the table below. More precisely, given the following input
image, here are the techniques that we can apply:
Original Flip Rotation Randomcrop

- Nuances of RGB
isslightlychanged -Additionofnoise -Partsofimage -Luminositychanges

-Capturesnoise -Moretolerancetoignored -Controlsdifference
thatcanoccur qualityvariationof -Mimicspotential inexpositiondue
withlightexposureinputs lossofpartsofimagetotimeofday

r Batch normalization – It is a step of hyperparameter γ, β that normalizes the batch
{ x i } .

Bynotingµ2B,σ
B the mean and variance of that we want to correct to the batch, it is done as

follows:

← −
√xi−µBxiγ+βσ2B+ε

It is usually done after a fully connected/convolutional layer and before a non-linearity layer and
aims at allowing higher learning rates and reducing the strong dependence on initialization.

r Epoch – In the context of training a model, epoch is a term used to refer to one iteration where
the model sees the whole training set to update its weights.
r Mini-batch gradient descent – During the training phase, updating weights is usually not
based on the whole training set at once due to computation complexities or one data point due
to noise issues. Instead, the update step is done on mini-batches, where the number of data
points in a batch is a hyperparameter that we can tune.
r Loss function – In order to quantify how a given model performs, the loss function L is
usually used to evaluate to what extent the actual outputs y are correctly predicted by the
model outputs z.

r Cross-entropy loss – In the context of binary classification in neural networks, the cross-
entropy loss L(z,y) is commonly used

[andisdefinedasfollows:]L(z,y)=−ylog(z)+(1−y)log(1−z)

r Backpropagation – Backpropagation is a method to update the weights in the neural network
by taking into account the actual output and the desired output. The derivative with respect
to each weight w is computed using the chain rule.

Using this method, each weight is updated with the rule:

∂ L(z ,y)
w

←−w−α∂w

r Updating weights – In a neural network, weights are updated as follows:

• Step 1: Take a batch of training data and perform forward propagation to compute the
loss.

• Step 2: Backpropagate the loss to get the gradient of the loss with respect to each weight.

• Step 3: Use the gradients to update the weights of the network.

1

CS 230 – Deep Learning

Winter 2019

Parameter tuning

Regularization

Large

Medium

Training size

Small

Illustration Explanation

Freezes all layers,
trains weights on softmax

Freezes most layers,
trains weights on last
layers and softmax

Trains weights on layers
and softmax by initializing
weights on pre-trained ones

r Learning rate – The learning rate, often noted α or sometimes η, indicates at which pace the
weights get updated. It can be fixed or adaptively changed. The current most popular method is
called Adam, which is a method that adapts the learning rate.

r Adaptive learning rates – Letting the learning rate vary when training a model can reduce
the training time and improve the numerical optimal solution. While Adam optimizer is the
most commonly used technique, others can also be useful. They are summed up in the table
b elow:

r Xavier initialization – Instead of initializing the weights in a purely random manner, Xavier
initialization enables to have initial weights that take into account characteristics that are unique
to the architecture.
r Transfer learning – Training a deep learning model requires a lot of data and more impor-
tantly a lot of time. It is often useful to take advantage of pre-trained weights on huge datasets
that took days/weeks to train, and leverage it towards our use case. Depending on how much
data we have at hand, here are the different ways to leverage this:

+

Method Explanation Updateofw

- Dampens oscillations
Momentum-ImprovementtoSGD w− αvdw
- 2 parameters to tune

- Root Mean Square propagation
RMSprop-Speedsuplearningalgorithm dww− α √
bycontrollingoscillations sdw

- Adaptive Moment estimation
Adam v-Mostpopularmethodw−α√ dw

-4parameterstotune sdw+ε

Remark: other methods include Adadelta, Adagrad and SGD.

[(1 1 +

[0

1]

Update of

r Dropout – Dropout is a technique used in neural networks to prevent overfitting the training
data by dropping out neurons with probability p > 0. It forces the model to avoid relying too much
on particular sets of features.

Remark: most deep learning frameworks parametrize dropout through the ’keep’ parameter 1 − p .
r Weight regularization – In order to make sure that the weights are not too large and that
the model is not overfitting the training set, regularization techniques are usually performed on
the model weights. The main ones are summed up in the table below:

LASSO Ridge ElasticNet
- Shrinks coefficients to 0
-GoodforvariableselectionMakescoefficientssmallerTradeoffbetweenvariableselectionandsmallcoefficients

... + λ| | θ
λ
∈ R

... + λ| | θ
λ
∈ R

... λ

λ

b

α)θ

R,α

αv

v
s

α| | θ
,

dbα s

b

ε

| | 1 | | −

∈

| | | |

∈

−

b ← − b − α √

b ← − b − √

| |

db

db

db+

db

2
2]22

2

CS 230 – Deep Learning

Winter 2019

r Early stopping – This regularization technique stops the training process as soon as the
validation loss reaches a plateau or starts to increase.

Good practices

r Overfitting small batch – When debugging a model, it is often useful to make quick tests
to see if there is any major issue with the architecture of the model itself. In particular, in order
to make sure that the model can be properly trained, a mini-batch is passed inside the network
to see if it can overfit on it. If it cannot, it means that the model is either too complex or not
complex enough to even overfit on a small batch, let alone a normal-sized training set.

r Gradient checking – Gradient checking is a method used during the implementation of
the backward pass of a neural network. It compares the value of the analytical gradient to the
numerical gradient at given points and plays the role of a sanity-check for correctness.

Numericalgradient Analyticalgradient

Formula df()f(x+h)−f(x−h) dfx
≈ (x)=f′(x)dx 2h dx
- Expensive; loss has to be
computed two times per dimension- ’Exact’ result- Used to verify correctness
Commentsofanalyticalimplementation -Directcomputation
-Trade-off in choosing h
not too small (numerical instability) - Used in the final implementation
nor too large (poor gradient approx.)

? ? ?

3

